рефераты бесплатно
Рефераты бесплатно, курсовые, дипломы, научные работы, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения,рефераты литература, рефераты биология, рефераты медицина, рефераты право, большая бибилиотека рефератов, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент и многое другое.
ENG
РУС
 
рефераты бесплатно
ВХОДрефераты бесплатно             Регистрация

Развитие технологии МОП ИС  

Развитие технологии МОП ИС

Содержание

Стр.

Введение. 3

1 Развитие МОП ИС. 4

2 Принцип работы и структура МОП - транзистора 6

3 Технология n – канальных МОП СБИС. 8

3.1 Исходный материал. 10

3.2 Изоляция. 11

3.3 Легирование области канала. 12

3.4 Формирование затвора. 13

3.5 Формирование областей истока и стока. 14

3.6 Нанесение и оплавление фосфорно-силикатного стекла (ФСС) 15

3.7 Металлизация. 16

4 Особенности технологии КМОП БИС.. 17

5 Особенности субмикронных МОП – транзисторов. 21

5.1 Конструкции МОП - транзисторов в СБИС.. 23

5.2 Методы улучшения характеристик МОП - транзисторов. 26

Список использованных источников. 31

Введение

Схемы на МОП (металл - окисел - полупроводник) - транзисторах составляют в настоящее время значительную часть изделий, выпускаемых электронной про­мышленностью. На их основе строится большинство интеграль­ных схем с сверх большой (СБИС) и большой степенью интеграции. Схемы на МОП - транзисторах занимают доминирующее поло­жение при создании таких функционально законченных изделий, как постоянные и оперативные запоминающие устройства, микроконтроллеры, микропроцессоры, АЦП, ЦАП и т.д.

Благодаря своей высокой надежности и большой функцио­нальной сложности МОП СБИС позволяют строить более дешевую аппаратуру. При равной функциональной сложности они имеют меньшие геометрические размеры, чем схемы на би­полярных транзисторах, а процесс их изготовления, как пра­вило, проще, чем технология схем на биполярных приборах. Значительным достоинством МОП ИС является и то, что их применение в устройствах позволяет повысить надеж­ность и сложность последних, а также предсказывать параметры разрабатываемых на их основе систем [1].

Развитие технологии изготовления МОП ИС позволило повысить скорость работы цифровых микросхем, которые в настоящее время строятся на МОП транзисторах и уменьшить при этом габаритные размеры микросхем.

В работе рассматриваются основные этапы технологии, используемые при изготовлении МОП – транзисторов и тенденция развития технологии.









1 Развитие МОП ИС

Принцип работы полевого транзистора (МОП - транзистора) был известен ещё до появления биполярного транзистора. Однако лишь недавно, благодаря достижению стабильности и контролируемости технологического процесса МОП БИС стали реальностью.

Согласно литературным источникам, первые попытки построить активный полупроводниковый прибор, основанный на эффекте поля, были предприняты Лилиефельдом в начале 30 – х гг. О. Хейл запатентовал свое открытие в Великобритании в 1935 г. Первая действующая модель униполярного полевого транзистора была разработана фирмой Bell Telephone Laboratories, где в 1948 г. Бардиным и Бреттейном был открыт транзисторный эффект. Ученые наблюдали этот эффект в серии экспериментов по модуляции тока, протекающего через точеч­ные контакты с кристаллом германия. Их открытие проложило дорогу к разработке точечных транзисторов и к изобретению биполярных транзисторов, работа которых в большей степени основаны на инжекции неосновных носителей заряда, чем на полевом эффекте. Затем внимание исследователей переключи­лось на эти два типа биполярных транзисторов, и развитие полевых транзисторов фактически приостановилось.

В 1952 г. Шокли описал полевой транзистор с управляю­щим обратно смещенным р - n - переходом. Такие полевые тран­зисторы были впоследствии изготовлены и исследованы Декеем и Россом, которые в 1955 г. аналитически определили предель­ные параметры подобных транзисторов. Однако первые по­пытки изготовить полевой МОП - транзистор оказались безуспеш­ными, поскольку не удавалось получить контролируемую и ста­бильную поверхность.

В 1958 г. появилась первая монолитная ИС с биполярными плоскостными транзисторами. 

Важным достижением в полупроводниковой технике явилась разработка в начале 60-х гг. кремниевой планарной технологии. Выращивание, травление и повторное выращивание изоли­рующего слоя окисла на поверхности кремниевой подложки позволили получить значительно более стабильную поверхность, а также контролировать геометрические размеры с большей точностью, чем это было возможно ранее. В результате на­ступил период в развитии МОП - транзисторов, когда стало воз­можным заменить ими электронные лампы и дорогостоящие биполярные транзисторы. Попытки серийного производства МОП - транзисторов натолкнулись на трудности, связанные с миграцией заряда вдоль поверхности, которая приводила к ухудшению их электрических характеристик. С последующим улучшением технологии появились первые надежные дискретные МОП -транзисторы с воспроизводимыми параметрами.

ИС содержащая меньше 100 полевых транзисторов была изготовлена в 1961 г Bell Laboratories более чем через 30 лет после открытия принципа действия полевого транзистора.

            Проблемы контроля технологического процесса постоянно беспокоили изготовителей МОП – схем вплоть до 1967 г. В это время процент годных МОП – схем со стабильными параметрами был увеличен как за счёт усовершенствования основного МОП процесса, так и за счёт усиления технологической дисциплины и установления строго контролируемой окружающей среды в чистых помещениях на критических этапах технологического процесса. Впоследствии процент входа годной продукции продолжал непрерывно расти благодаря накоплению производственного опыта и созданию лучших оборудования, инструментов и исходных материалов.

            В дополнение к повышению качества материалов и оборудования значительно возрос и объем знаний в области физики поверхности полупроводников, что привело к усовершенствова­нию технологического процесса  в некоторых его критических точках. Другим фактором, который помог увеличить выход годной продукции, было развитие схемотехники,  позволившее полнее использовать специфические свойства МОП – транзисторов [1].

 В 1969 году ИС на МОП транзисторах содержали от 1000 до 10000 транзисторов. 1971 году была придумана технология ионной имплантации, 1975 году благодаря технологии с самосовмещённого затвора, стало возможным производство СБИС (10000 – 100000 транзисторов).

В 1980 году – степень интеграции увеличилась до 100 000 транзисторов и больше на кристалле, и появились УБИС (ультра большие ИС).

Наконец, с 1990 годов производятся ИС с 1000000 и больше транзисторов. Благодаря развитию технологии одна микросхема малых размеров может выполнять множество функций и с большой производительностью.



            2 Принцип работы и структура МОП - транзистора


Структура n-канального МОП - транзистора приведена на рис. 2.1. Затвор выполнен на металле, а сток и исток - на n-областях (при замене на p-области получается p-канальный транзистор). Области n(p) называют диффузионными. При подаче напряжений на затвор и сток (исток) под затвором образуется тонкий канал, по которому течет ток, создаваемый движением электронов (дырок) от истока к стоку в nМОП (pМОП) - транзисторе. Толщина канала составляет около 100 ангстрем. Поскольку подвижность электронов почти в 2,5 раза выше, чем подвижность дырок, проводимость открытого n МОП - транзистора в 2,5 раза больше проводимости p МОП - транзистора. МОП - транзисторы имеют следующие усредненные характеристики: входной ток - 5 мкА, входное сопротивление в статическом режиме - 106 Ом, сопротивление исток - сток закрытого транзистора 1012 Ом, сопротивление открытого транзистора - сотни Ом, паразитная емкость исток - сток - 10 пФ. В биполярном транзисторе движение носителей происходит в слое, имеющем значительно большую толщину, чем в канальном транзисторе. Биполярные транзисторы имеют следующие усредненные характеристики: входной ток - 1 мкА, входное сопротивление - сотни Ом, сопротивление открытого транзистора - десятки Ом, сопротивление закрытого транзистора - сотни кОм, паразитная емкость эмиттер - коллектор - 10 пФ.


Рисунок – 2.1 - Структура n-канального МОП – транзистора


            На рис. 2.2 показаны стандартные обозначения n МОП- и p МОП - транзисторов.


Рисунок 2.2 - Обозначения n МОП- и p МОП – транзисторов








            3 Технология n – канальных МОП СБИС


            Полевой транзистор на основе структуры металл – окисел – полупроводник (МОП ПТ) наиболее широко используется в СБИС. До начала 70 – х гг. доминировали интегральные схемы на основе p – канальных МОП ПТ, что было связано с низким качеством окисла и границы раздела SiO2/Si. В результате возникали заряды, приводящие к инверсии типа проводимости на поверхности подложки p – типа. После 70 – х гг. доминируют n – канальные МОП ИС, преимущество которых проявляется в более высокой подвижности электронов по сравнению с дырками, и, следовательно, в большем быстродействии ИС.

            С технологической точки зрения изготовление МОП – транзисторов значительно проще биполярных транзисторов. Это можно видеть из сравнительного анализа данных таблицы 3.1.


Таблица 3.1 – Сравнение ключевых процессов и условий технологии производства биполярных и МОП – интегральных схем.

Биполярная технология

МОП - технология

4-7 процессов легирования (имплантация и/или диффузия)

Необходимость полной изоляции элементов (изолированных островков)

Эпитаксиальный процесс является одной из основных операций

Используется от 6 до 8 фотолитографий

Более 100 технологических операций

10 процессов с температурой около (или выше) 1000 C

Коэффициент передачи транзистора зависит от режимов легирования и термообработки

1-3 процесса легирования (имплантация, диффузия)

К изоляции предъявляются менее жёсткие требования

Эпитаксиальный процесс не обязателен


Используется 4 - 6 фотолитографий

Около 30 технологических операций

2 процесса с температурой около (или выше) 1000 C

Коэффициент передачи транзистора существенно не зависит от режимов легирования

МОП - транзистор имеет малую площадь и, обладая высоким входным сопротивлением, потребляет малую мощность от источника сиг­нала. В дополнение, при нулевом напряжении на затворе МОП ПТ с индуцированным каналом ток стока практически отсутствует, т. е. мощность потребляется транзистором только во время подачи напря­жения на затвор. Процесс изготовления МОП - интегральных схем сво­дится к формированию МОП – транзисторов и соединений между ними, поскольку МОП - структуры могут использоваться не только в качестве транзисторов, но и как резисторы и конденсаторы, т. е. практически все схемные функции можно реализовать на одних МОП - структурах.
















Рисунок 3.1 - Схема изготовления МОП ИМ с самосовмещенными поликремниевыми затворами;

а — выращивание маскирующего оксида и первая фотолитография; бвыращивание подзатворного оксида; в — наращивание поликристаллического кремния; г — вторая фотолито­графия; д — диффузия областей истоков и стоков;

е — осаждение плевки оксида; ж — тре­тья фотолитография, формирование металлизации

Благодаря вышеуказанным факторам, МОП - интегральные схемы за­няли ведущее положение в области цифровой обработки информации. Рассмотрим типичный технологический процесс изготовления МОП – транзистора с LOCOS-изоляцией. На рисунке 3.1 представлены основные этапы технологического процесса, а в разделах 3.1 – 3.7 более подробное их описание.


3.1 Исходный материал


Исходный материал - подложки слаболегированного (порядка ) кремния р - типа с ориентацией поверхности вдоль (001) плоскости. Выбор подложек с ориентацией (001) обусловлен значи­тельно меньшей (на порядок) плотностью поверхностных состояний по сравнению с ориентацией (111). При выборе уровня легирования подложки принимают во внимание следующие обстоятельства. Чем слабее легирована подложка, тем менее чувствительно пороговое на­пряжение транзистора к смещению на подложке и тем меньшая ем­кость возникает между областями истока, стока и подложкой. Однако если подложка легирована слишком слабо, обедненные области исто­ка и стока могут соприкасаться, приводя к проколам транзисторов. В дополнение, слаболегированные подложки имеют высокую концен­трацию неосновных носителей заряда, что увеличивает токи утечки p-n-переходов при их обратном смещении. Эту проблему можно ре­шить двумя способами. Один из них заключается в выращивании сла­болегированных (~) эпитаксиальных слоев р – типа на сильно­легированных   подложках р - типа  (~). Сильнолегированные подложки имеют низкую концентрацию неосновных носителей заряда (электронов), поэтому диффузионный ток в обратно смещенных пере­ходах подавляется несмотря на большую диффузионную длину неос­новных носителей в эпитаксиальном слое. Второй подход к решению проблемы основан на использовании эффекта внутреннего гетерирования. На глубине подложки формируют преципитаты Si02, которые существенно снижают время жизни неосновных носителей заряда при одновременной очистке приповерхностных областей подложки.

Страницы: 1, 2, 3


© 2010.