рефераты бесплатно
Рефераты бесплатно, курсовые, дипломы, научные работы, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения,рефераты литература, рефераты биология, рефераты медицина, рефераты право, большая бибилиотека рефератов, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент и многое другое.
ENG
РУС
 
рефераты бесплатно
ВХОДрефераты бесплатно             Регистрация

Биография и труды Колмогорова А.Н.  

Биография и труды Колмогорова А.Н.

ФГОУ ВПО

Балтийская государственная академия рыбопромыслового флота

Кафедра высшей математики











Реферат

по высшей математике

Тема:

Биография и труды Колмогорова А.Н.






Выполнил:

Крупнова А.С.





Калининград 2008

Содержание


Вступление

Основная часть

1. Биография

1.1 Ранние годы

1.2 Университет

1.3 Профессор

1.4 Послевоенная работа

2. Работы Колмагорова А.Н

2.1 Колмогоровские аксиомы элементарной теории вероятностей

2.2 Колмогоровская эмпирическая дедукция аксиом

2.3 Аксиома непрерывности и бесконечные вероятностные пространства

2.4 Бесконечные вероятностные пространства и «идеальные события»

2.5 Двойственность Колмогорова

2.6 Гносеологический принцип

2.7 Средние Колмогорова

2.8 Колмогоровы теоремы

Заключение.

Список использованной литературы.


Вступление


Я выбрала данную тему, потому что для меня интересна не только биография известного советского математика, но и его труды. Это тема достаточно обширная. В данном реферате я начну с рассмотрения биографии А.Н.Колмогорова. Далее будем рассматривать труды этого великого математика: аксиомы, теоремы.


Основная часть


1. Биография


Андрей Николаевич Колмогоров (12 (25) апреля 1903, Тамбов - 20 октября 1987, Москва) - выдающийся отечественный математик, доктор физико-математических наук, профессор Московского Государственного Университета (1931 <#"1.files/image001.gif">, так что вторая часть аксиомы II оказывается вполне естественной. Для события Ω всегда m = n, благодаря чему естественно положить P(Ω) = 1 (аксиома III). Если, наконец, x и y несовместны между собой (то есть события x и y не пересекаются как подмножества Ω), то m = m1 + m2, где m,m1,m2 обозначают соответственно число экспериментов, исходами которых служат события x + y, x, y. Отсюда следует:



Следовательно, является уместным положить P(x+y) = P(x) + P(y) (аксиома IV).

 

2.3 Аксиома непрерывности и бесконечные вероятностные пространства


В отличие от элементарной теории вероятностей, теоремы, которые выводятся в общей математической теории вероятностей, естественно применяются также и к вопросам, связанным с бесконечным числом случайных событии, однако при изучении этих последних применяются существенно новые принципы. В большей части современной теории вероятностей предполагается, что кроме аксиом элементарной теории вероятностей (I-IV) выполняется ещё аксиома V (аксиома непрерывности). Для убывающей последовательности  событий из F такой, что  Ø, имеет место равенство .

Аксиома непрерывности - это единственная аксиома современной теории вероятностей, относящаяся именно к ситуации бесконечного числа случайных событий. Обычно в современной теории вероятностей вероятностным пространством называется только такое вероятностное пространство (Ω, F, P), которое, кроме того, удовлетворяет аксиоме V. Вероятностные пространства в смысле аксиом I-IV Колмогоров предлагал называть вероятностными пространствами в расширенном смысле (у Колмогорова поле вероятностей в расширенном смысле), в настоящее время этот термин употребляется крайне редко. Заметим, что если система событий F конечна, аксиома V следуeт из аксиом I-IV. Все модели с вероятностными пространствами в расширенном смысле удовлетворяют, следовательно, аксиоме V. Система аксиом I-V является, непротиворечивой и неполной. Напротив, для бесконечных вероятностных пространств аксиома непрерывности V является независимой от аксиом I-IV.

Так как новая аксиома существенна лишь для бесконечных вероятностных пространств, то почти невозможно разъяснить её эмпирическое значение, например, так, как это было проделано с аксиомами элементарной теории вероятности (I-IV). При описании какого-либо действительно наблюдаемого случайного процесса можно получать только конечные поля - вероятностные пространства в расширенном смысле. Бесконечные вероятностные пространства появляются как идеализированные схемы действительных случайных явлений. Общепринято молчаливо ограничиваться такими схемами, которые удовлетворяют аксиоме V, что оказывается целесообразным и эффективным в различных исследованиях.

2.4 Бесконечные вероятностные пространства и «идеальные события»


Алгебра F событий пространства элементарных событий Ω называется борелевской алгеброй, если все счётные суммы событий xn из F принадлежат F. В современной теории вероятностей борелевские алгебры событий обычно называют σ-алгебрами событий (сигма-алгебрами <#"1.files/image007.gif">,


если Hr(R,G) = 0 и Hr + 1(R,G) = 0.

Двойственность Колмогорова для групп когомологий <#"1.files/image008.gif">,


если Hr(R,G) = 0 и Hr + 1(R,G) = 0.

 

2.6 Гносеологический принцип


Гносеологический принцип - утверждение, что в мышлении <#"1.files/image009.gif">,


где φ - непрерывная строго монотонная функция, а φ-1 - функция, обратная к φ. При φ(x) = x получают среднее арифметическое <#"1.files/image010.gif">X. Норма индуцирует на Х метрику ρ(x, y) = ||x-y|| и, следовательно, топологию, совместимую с этой метрикой. Полные относительно указанной метрики пространства называются банаховыми пространствами. Нормированное пространство тогда и только тогда является гильбертовым, когда


||x+y|| + ||x-y|| = 2*||x||2 + 2*||y||2 для x, y X.

Отделимое топологическое векторное пространство нормируемо, если его топология совместима с некоторой нормой. Нормируемость равносильна существованию выпуклой ограниченной окрестности нуля.

 

2.8.2 Теорема о применимости больших чисел закона

Данная теорема Колмогорова дает ответ на вопрос: при каких условиях суммы Yn предельно постоянны?

Не ограничивая общности, можно предположить, что медианы величин Хn,k равны нулю; пусть Хn,k = Хn,k при | Хn,k |≤1 и  Хn,k = 0 при | Хn,k |>1, тогда одновременное выполнение двух условий


 при

и

при


Необходимо и достаточно для предельного постоянства сумм Yn . В качестве Сn можно взять . Если математические ожидания существуют, то легко указать дополнительные условия, при которых можно выбрать Сn = EYn , что приводит к необходимым и достаточным условиям больших чисел закона в классической формулировке, т.е.


.

Для последовательности независимых одинаково распределенных величин {Xn} эти условия сводятся, в соответствии с теоремой Хинчина, к существованию математического ожидания. В то же время для предельного постоянства средних арифметических Yn в этом случае необходимо и достаточно условие  при .

 

2.8.3 Теорема о применимости больших чисел усиленного закона

В случае независимых слагаемых наиболее известными являются условия приложимости больших чисел усиленного закона, установленные А.Н.Колмогоровым: достаточное (1930) - для величин с конечными дисперсиями и необходимое и достаточное (1933) - для одинаково распределенных величин (закрепляющееся в существовании математического ожидания величин Xi). Теорема Колмогорова для случайных величин X1, X2, …, Xn, …с конечными дисперсиями утверждает, что из условия


 


вытекает приложимость к последовательности X1, X2, …, Xn, … больших чисел усиленного закона


.


В терминах дисперсий условие


 

оказывается наилучшим в том смысле, что для любой последовательности положительных чисел bn с расходящимся рядом



можно построить последовательность независимых случайных величин Xn с DXn = bn , не удовлетворяющую больших чисел усиленному закону. Область применения условия


 


может быть расширена на основе следующего замечания. Пусть mXn - медиана Xn. Сходимость ряда


 


необходима для больших чисел усиленного закона. Из леммы Бореля-Кантелли вытекает, что


 


с вероятностью 1, начиная с некоторого номера. Поэтому при изучении условий приложимости больших чисел усиленного закона можно сразу ограничиться случайными величинами, удовлетворяющими последнему условию.

В доказательствах А.Я. Хинчина и А.Н. Колмогорова вместо сходимости ряда

 


устанавливается сходимость ряда


,


где nk = 2k. При этом А.Н. Колмогоров использовал носящее его имя неравенство для максимумов сумм случайных величин.


Заключение


И в заключении можно сказать, что А.Н. Колмогоров весьма талантливый человек и развитый во всех направлениях. Его труды привнесли много нового в развитие науки и техники. Он дал новые направления на изучение еще не открытых областей знаний.

Его достижения не прошли бесследно - при жизни он был почетным членом Институтов и университетов, а также имел огромное количество наград: премий, медалей, орденов и т.п.


Список использованной литературы


1.       А.М. Прохоров, И.В. Абашидзе Математический энциклопедический словарь Москва Научное издательство «Большая российская энциклопедия» 1995

2.      А.В. Прохоров Введение в теорию вероятностей Москва 1982

3.      www.5ballov.ru <http://www.5ballov.ru>



© 2010.