рефераты бесплатно
Рефераты бесплатно, курсовые, дипломы, научные работы, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения,рефераты литература, рефераты биология, рефераты медицина, рефераты право, большая бибилиотека рефератов, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент и многое другое.
ENG
РУС
 
рефераты бесплатно
ВХОДрефераты бесплатно             Регистрация

Булевы функции  

Булевы функции

1.Основные понятия булевой алгебры


Технические вопросы, связанные с составлением логических схем ЭВМ, можно решить с помощью математического аппарата, объектом исследования которого являются функции, принимающие, так же как и их аргументы, только два значения - “0” и “1”.

Таким аппаратом является математическая логика (алгебра логики, булева алгебра).

Логика - это наука о законах и формах мышления.

Математическая логика занимается изучением возможностей применения формальных методов для решения логических задач. Один из разделов математической логики является алгебра логики.

Основное понятие алгебры логики - высказывание. Высказывание - это некоторое предложение, о котором можно утверждать, что оно истинно или ложно.

Любое высказывание можно обозначить символом х и считать, что х=1, если высказывание истинно, а х=0 - если высказывание ложно. Истинному высказыванию соответствует утверждение -“Да”, ложному высказыванию - утверждение - “Нет”.

Логическая (булева) переменная - такая величина х, которая может принимать только два значения х={0,1}.

Высказывание абсолютно истинно, если соответствующая ей логическая величина принимает значение х=1 при любых условиях.

Высказывание абсолютно ложно, если соответствующая ей логическая величина принимает значение х=0 при любых условиях.

Функция f, зависящая от n переменных x1,x2,...,xn, называется булевой, или переключательной, если функция f и любой из ее аргументов  принимают значения только из множества {0,1}. Аргументы булевой функции также называются булевыми.


2.Способы задания булевых функций


Произвольная булева функция задается одним из трех способов: матричным (табличным), геометрическим и аналитическим.

При матричном способе булева функция f(x1,...,xn) задается таблицей истинности (табл. 1 и 2), в левой части которой представлены все возможные двоичные наборы длины n, а в правой указывается значение функции на этих наборах.

Под двоичным набором понимается совокупность значений аргументов x1,x2,...,xn булевой функции f. Двоичный набор имеет длину n, если он представлен n цифрами из множества {0,1}. В табл. 1 и 2 перечислены все двоичные наборы соответственно длины 3 и 4.


Таблица 1      Таблица 3

х1

х2

х3

f(х1,х2,,х3)


Номер

набора

f(х1,х2,,х3)

0

0

0

0


0

0

0

0

1

1


1

1

0

1

0

0


2

0

0

1

1

0


3

0

1

0

0

1


4

1

1

0

1

1


5

1

1

1

0

0


6

0

1

1

1

1


7

1


Таблица 2                                                 Таблица 4.

x1

x2

x3

x4

f(х1..х4)


x1,x2,...,xj-1

xj,xj+1,...,xn








00..0

0...1

...

11..1

0

0

0

0

1







0

0

0

1

0


00...0



...


0

0

1

0

0







0

0

1

1

1







0

1

0

0

1







0

1

0

1

0


00...1



...


0

1

1

0

1





f(х1...хn)


0

1

1

1

1







1

0

0

0

1







1

0

0

1

0


...

...

...

...

...

1

0

1

0

0







1

0

1

1

0







1

1

0

0

0







1

1

0

1

0


11...1





1

1

1

0

1







1

1

1

1

0








Иногда двоичные наборы в таблице истинности булевой функции удобно представлять номерами наборов. Запишем аргументы x1,x2,...,xn в порядке возрастания их индексов. Тогда любой двоичный набор можно рассматривать как целое двоичное число N, называемое номером набора. Например, двоичные наборы 0101 и 1000 имеют номера 5 и 8 соответственно. Очевидно, любая булева функция может быть задана таблицей истинности, в которой двоичные наборы заменены своими номерами (табл.3).

Булевы функции, зависящие от большого числа переменных, задавать таблицей истинности неудобно в силу ее громоздкости. Например, таблица истинности булевой функции 8 переменных будет содержать 28 = 256 строк. Поэтому для задания функций многих переменных удобно использовать модификацию таблицы истинности.

Рассмотрим способ построения такой таблицы истинности для функции n переменных. Множество из n переменных функции разбивается на два подмножества: x1,x2,...,xj-1 и хj, xj,xj+1,...,xn. Переменными x1,x2,...,xj-1 отмечают строки таблицы истинности, задавая в каждой строке значение соответствующего двоичного набора длины j-1. Переменными xj,xj+1,...,xn отмечают ее столбцы, задавая в каждом столбце значения соответствующего двоичного набора длины n-j+1. Значение функции записывается в клетке на пересечении соответствующей строки и столбца (табл.4.).

Страницы: 1, 2, 3, 4, 5, 6


© 2010.