рефераты бесплатно
Рефераты бесплатно, курсовые, дипломы, научные работы, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения,рефераты литература, рефераты биология, рефераты медицина, рефераты право, большая бибилиотека рефератов, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент и многое другое.
ENG
РУС
 
рефераты бесплатно
ВХОДрефераты бесплатно             Регистрация

Геометрические свойства равнобедренных треугольников  

Геометрические свойства равнобедренных треугольников

Геометрические свойства равнобедренных треугольников

В. В. Богун

Предлагаемая статья, как следует из названия, посвящена изучению свойств равнобедренных треугольников, а также установлению взаимосвязей между данными треугольниками. Необходимость исследований назрела, в первую очередь, из-за частого применения в архитектуре равнобедренных треугольников как геометрических моделей отдельных фрагментов зданий и сооружений, а во-вторых, пополнения базы знаний в области элементарной геометрии.

Где же могут найти применение данные теоретические исследования? Прежде всего в педагогике как таковой, поскольку они существенно расширят кругозор школьников и студентов, изучающих элементарную геометрию, а также тригонометрию, поскольку работа находится на стыке двух разделов математики - элементарной геометрии и тригонометрии, причем их важность абсолютно равнозначна.

Существенными плюсами данных исследований являются следующие факты:

Возможность выхода на теорию стереометрической взаимосвязи между геометрическими фигурами, в частности, правильных четырехугольных пирамид;

Объяснение с помощью свойств равнобедренных треугольников и построенных на их основе правильных четырехугольных пирамид геометрических взаимосвязей между пирамидами Гизы в Египте (Хеопса, Хефрена и Микерина);

Последний факт должен вызвать особый интерес читательской аудитории к исследованиям, поскольку в отличие от всей геометрии в целом, представленной в популярных учебниках в большинстве случаев лишь в виде "голой" теории, мы имеем сочетание теоретических и практических аспектов.

Для простоты изложения материала внесем ряд определений:

Основная высота - высота равнобедренного треугольника, опущенная из вершины, являющейся точкой пересечения равных боковых сторон, на основание и соответственно пересекающей последнее в его середине.

Полуподобные равнобедренные треугольники - равнобедренные треугольники, для которых справедливо равенство углов при основании одного половинным углам между боковыми сторонами другого.

Половинноподобные равнобедренные треугольники - равнобедренные треугольники, равные углы при основании одного являются половинными углами при основании другого.

Теорема 1: Об отношении основной высоты равнобедренного треугольника к радиусу вписанной в него окружности

Отношение основной высоты равнобедренного треугольника к радиусу вписанной в него окружности равно алгебраической сумме единицы и величины, обратной по значению косинусу равных углов при основании.

Исходные данные:

Равнобедренный ∆ АВС (рис. 1); ВD = h  основная высота, опущенная из вершины В на основание АС = 2  а; АВ = ВС = b  боковые стороны треугольника; DО = КО = LО = r - радиус вписанной в ∆ АВС окружности,  ВАС =  ВСА =  .

Доказать:

 Геометрические свойства равнобедренных треугольников(1)

Доказательство:

Формулы для вычисления площади ∆АВС:

S ∆АВС Геометрические свойства равнобедренных треугольников.

S ∆АВС Геометрические свойства равнобедренных треугольников.

 Геометрические свойства равнобедренных треугольников

Рис. 1. Равнобедренный ∆ АВС с вписанной в него окружностью.

Получим:

 Геометрические свойства равнобедренных треугольников



© 2010.