рефераты бесплатно
Рефераты бесплатно, курсовые, дипломы, научные работы, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения,рефераты литература, рефераты биология, рефераты медицина, рефераты право, большая бибилиотека рефератов, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент и многое другое.
ENG
РУС
 
рефераты бесплатно
ВХОДрефераты бесплатно             Регистрация

Геометрический материал на уроках математики (наглядность)  

Геометрический материал на уроках математики (наглядность)

I. Введение

Наглядная геометрия: ее роль и место, история возникновения.


         Необходимость и возможность введения в начальный школе пропедевтического (подготовительного) курса геометрии обсуждается педагогической общественностью нашей страны уже более столетия. И хотя на сегодняшний день этот курс не нашел достойного места в отечественной школе, причины, побуждавшие к созданию различных вариантов этого курса (названного или начальным, или пропедевтическим, или наглядным курсами геометрии), достаточно весомые. Рассмотрим на наш взгляд, основные.

1. Традиционным для нашей основной школы систематический курс геометрии (изучающейся с 7-го класса) носит дедуктивный характер.

         Как известно, при дедуктивном построении геометрии, доказывая те или иные теоремы, можно опираться только на аксиомы, на ранее доказанные теоремы, на первоначальные (неопределяемые) понятия и на понятия, которым дано определение. Никакие ссылки на очевидные факты, усматриваемые непосредственно из чертежа, не в явной, ни в скрытой форме в научно – дедуктивной системе изложения геометрии недопустимы. Следовательно, очевидные, непосредственно рассматриваемые факты или свойства геометрических фигур должны быть знакомы детям за долго до изучения систематического курса геометрии.

2. Отсутствие должной преемственности курса математики начальной школы с курсом математики средней школы в изучении геометрического материала.

         Изучение геометрического материала в современной начальной школе преследует в основном практические цели, сопровождая курс арифметики. Так, рассмотрение свойств фигур, формирование начальных геометрических представлений направлено в основном на приобретение учащимися практических умений и навыков, связанных с решением практических задач на вычисление (длины или площади). Может быть, поэтому отбор геометрического материала во многом диктуется интересами арифметики, а с тоски зрения геометрии имеет случайный характер. Об этом свидетельствует «объяснительная записка» к программе по математике 1999 год, где не делается даже малейшей попытки обосновать содержание геометрического материала, подлежащего рассмотрению в начальной школе. В программе по математике начальных классов геометрический материал представлен мелкими крупицами как незначительное вкрапление в арифметику и не представляет, на наш взгляд, целостного,  обоснованного курса. Таким образом, сейчас в начальной школе происходит лишь определенное накопление фактического материала по геометрии, а соответствующего его обобщения не происходит. Более того, в курсе математики начальной школы в основном рассматривают плоскостные фигуры, тогда как даже ребенок – дошкольник имеет большой опыт общения с параллелепипедом, кубом, шаром, пирамидой (кубики, конструктор, мяч и т.д.), а в этом отношении геометрическая пропедевтика в современной школе проигрывает той, которая была в школе прошлого.

3. Наглядность и практичность обучения геометрии являются необходимыми условиями успешного ее изучения.

         Геометрия, как и  любой другой учебный предмет, не может обходиться без наглядности. Известный русский методист-математик В.К. Беллюстин еще в начале XX века отмечал, что «никакое отвлеченное сознание невозможно, если ему не предшествует обогащение сознания нужными представлениями». Формирование отвлеченного мышления у школьников с первых школьных шагов требует предварительного пополнения их сознания конкретными представлениями. При этом удачное и умелое применение наглядности побуждает детей к познавательной самостоятельности и повышает их интерес к предмету, является важнейшим условием успеха.

         В тесной связи с наглядностью обучения находится и его  практичность. Именно из жизни черпается конкретный материал для формирования наглядных геометрических представлений. В этом случае обучение становится наглядным, согласованным с жизнью ребенка, отличается практичностью. Так возникла идея преподавания так называемой наглядной геометрии. Сказанное было хорошо известно русским педагогам прошлых лет и успешно применялось на практике.

4. Идея целостного курса наглядной геометрии создает определенную автономию начальной школе, позволяет ее выпускникам переходить к профессиональному обучению.

         В связи с намечаемым переходом на всеобщее начальное шестилетнее обучение (который н6ачал осуществляться в России в конце революции 1917 г.) возникла идея создания целостного и достаточно информативного курса наглядной геометрии.

         Приведем содержание  программы курса наглядной геометрии, которая действовала накануне революции в начальных школах одного из уездов Вологодской губернии. Сделаем несколько предварительных замечаний. Для начальной школы того времени программа по арифметике, по существу, охватывала все вопросы арифметики, которые изучаются в первых шести классах современной школы. Программа по геометрии существенно выходила за рамки геометрической чисти программы по математике первых шести лет обучения в современной школе. Таким образом, предполагаемый к тому времени переход к всеобщему начальному образованию предусматривал существенно более весомое программное обеспечение, чем его имеет даже современная начальная школа.

         Начальные геометрические понятия (линии, простейшие геометрические фигуры и тела, симметрия, простейшие планы и т.д.)  изучались на первом и втором годах обучения совместно с изучением арифметики. На третьем и четвертом  годах обучения геометрия изучалась систематически на отдельных уроках.










II. Содержание.

2.1. Наглядность при изучении  геометрического материала.

         Основой формирования у детей представлений о геометрических фигурах является способность  их к восприятию формы. Эта способность позволяет ребенку узнавать, различать и изображать различные геометрические фигуры: точку, прямую, кривую, ломаную, отрезок, угол, многоугольник, квадрат, прямоугольник и т.д. Для этого достаточно показать ему ту или иную геометрическую фигуру  и назвать ее соответствующим термином. Например: отрезки, квадраты, прямоугольники, круги.


Отрезки                                                                       Квадраты

          

 




 Рис. 1                                              

                                                                          Рис. 2



Прямоугольники                                                          Круги

 










             Рис.3                                                       Рис.4

         Аналогично можно поступить с геометрическими телами, показ их моделей: это цилиндр (куб, конус и т.д.).

         Такое знакомство учащихся с геометрическими фигурами позволяет им воспринимать их как целостный образ, поэтому, если изменить расположение или размер тех фигур, которые были предложены в образце, дети могут допускать ошибки.  Например, в фигурах, изображенных на рисунке.








                                            Рис.5

         Ученик может не узнать квадраты в фигурах, изображенных на рис. 6 прямоугольники,


 







                   Рис.6                                                                    Рис.7

но на рисунке 7 фигуры, он может назвать прямоугольниками. Поэтому восприятие геометрической фигуры как целостного образа – лишь первый этап в формировании геометрических представлений ребенка.
         Важное место занимает при изучении геометрического материала наглядность.

         Цель метода наглядности в начальной школе обогащение и расширение непосредственного, чувственного опыта детей, развитие наглядности, изучение конкретных свойств предметов, создание условий для перехода к абстрактному мышлению, опоры для самостоятельного учения и систематизации изученного. В начальных классах применяется естественное, рисунковое, объемное, звуковая и графическая наглядность.

         Средство наглядности разнообразны: предметы и явления окружающей действительности, действие учителя и учеников изображения реальных предметов, процессов (рисунков, картины), модели предметов (игрушки, вырезки из картона), символические изображения (карты, таблицы, схемы).

         Чтобы организовать наблюдения учеников, от учителя требуется известная осторожность. Распространенная ошибка – применение очень яркой наглядности, когда ее учебная сущность затмевается яркими красками. Неопытный учитель часто привлекает внимание детей к второстепенным деталям. Излишне разукрашивается раздаточный материал. Схема, таблица содержат цвет только для выделения смысла, но не для украшения.

         Наглядные методы применяются на всех этапах педагогического процесса. Их роль обеспечение всесторонних, образное восприятие, дать опору на мышление.

         Каждый учитель постоянно должен понимать, что прочные знания у детей будут в том случае, если он будет опираться на жизненный опыт ребенка.

         Постоянно должна проводиться работа, связанная с наблюдением, сравниванием групп предметов. Широко должна использоваться наглядность, дидактический материал.

         При изучении нового материала рекомендуется такое построение урока, при котором работа начинается с разнообразных демонстраций, проводимых учителем или учеником. Применение наглядности на уроках математики при изучении геометрического материала, позволяет прочно и сознательно усвоить детям все программные вопросы.

         Язык математики – это язык символов, условных знаков, чертежей, геометрических фигур, схем. Дети, начиная с первого класса, пользуются при счете геометрическими фигурами (квадраты, прямоугольники, круги, отрезки и т.д.)

         Геометрический прием условного обозначения вещей и их отношения рисункам, чертежом и т.п. является средством более легкого представления и запоминания изучаемого. Простейшим геометрическим изображением величины и ее частей является так называемое одномерное или линейные диаграммы.











































2.2. Требования программы.


         Геометрический  материал (как и алгебраический) не выделяется в программе и в реальном процессе обучения в качестве самостоятельно раздела. Вопросы геометрического содержания рассматриваются всегда, когда это оказывается возможным, в тесной связи с рассмотрением остальных вопросов курса. Однако, как это отмечено в объяснительной записке к программе, в изложении вопросов геометрии должна соблюдаться и собственная логика, подчиненная основным целям включения этого материала в курс.

         Цели же эти состоят прежде всего в развитии пространственных представлений у детей, в формировании у них представлений о геометрических фигурах различных видов (точке, прямой и кривой линиях, отрезке, прямой, ломаной, прямом и непрямом угле, различных видов многоугольников, круге, окружности). Дети должны научиться изучать, различать и изображать эти фигуры как в тех случаях когда каждая из них предлагается им в изолированном виде, так и в тех, когда знакомая фигура представляет собой части другой, составлять фигуры из нескольких данных и т.п.

         При ознакомлении с геометрическим материалом значительное место уделяется измерениям: дети должны находить длину отрезка (1 класс), длину ломаной, периметр данного многоугольника (2 класс), площадь прямоугольника (3 класс).

         При этом определения понятий детям не сообщаются (и соответственно от учащихся не требуется их знания). Вместе с тем по отношению к ряду понятий (например, по отношению к прямоугольнику, квадрату и т.д.) указываются те существенные признаки, которые фактически отражают содержание этих понятий и дают возможность выделять соответствующие фигуры из класса фигур, относящихся к ближайшему родовому понятию («прямоугольник – четырехугольник, у которого все углы прямые», «квадрат – прямоугольник, у которого все стороны равны» и т.п.). Дети должны научиться практически использовать соответствующие признаки при узнавании различных фигур, их классификацию.

Страницы: 1, 2, 3, 4


© 2010.