рефераты бесплатно
Рефераты бесплатно, курсовые, дипломы, научные работы, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения,рефераты литература, рефераты биология, рефераты медицина, рефераты право, большая бибилиотека рефератов, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент и многое другое.
ENG
РУС
 
рефераты бесплатно
ВХОДрефераты бесплатно             Регистрация

Геометричні фігури на площині та їх площі  

Геометричні фігури на площині та їх площі

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ

ЛУБЕНСЬКА ЗАГАЛЬНООСВІТНЯ ШКОЛА № 3

І-ІІІ СТУПЕНІВ










РЕФЕРАТ

НА ТЕМУ:

ГЕОМЕТРИЧНІ ФІГУРИ НА ПЛОЩИНІ ТА ЇХ ПЛОЩІ

Виконала: учениця 5-Б класу

Німець Євгенія







Лубни 2007


Вступ


Даний реферат охоплює геометричні фігури, що розглядаються в планіметрії - розділі геометрії, в якому вивчають фігури на площині, тобто, так би мовити, у двовимірному світі.

Основними геометричними фігурами на площині є точка і пряма. Я дам їх визначення, як також визначення кута, трикутника, квадрата, чотирикутника, ромба, паралелограма, трапеції, многокутника. Пригадаю, як визначали площі згаданих фігур у часи античності та сучасні методи обчислення площ.


Точка і пряма


Як вже було зазначено, точка і пряма є основними геометричними фігурами на площині. Математично, точкою на площині є об’єкт, два плоскі виміри якого (x і y) прямують до нуля. Тобто, це об’єкт, що має плоскі координати x і y, але не має розмірів, тобто довжини і ширини, тобто це „існуюче ніщо”. Як би я не загострювала кінчик олівця, в надії нанести на площину математичну точку - в мене нічого не вийде. Реально нарисована точка матиме цілком реальні (хай навіть менше 0,1 мм!) розміри по x та по y. Таке визначення точки у математиці було зроблено для спрощення розрахунків.

Як правило, всяку геометричну фігуру прийнято вважати складеною з точок. Тому прямою на площині (рис.1) є геометричне місце точок, один з вимірів якого (скажімо довжина) рівний нескінченності, а інший - ширина, прямує до нуля. Для порівняння, відрізок (рис 2), як частина прямої, яка складена з усіх точок прямої, що лежать між двома її точками, має нульову ширину при цілком певній довжині, скажімо 15 см чи 5 м. Півпрямою, або променем (рис.3) називають частину прямої, яка складається з усіх точок цієї прямої, що лежать по один бік від даної на ній точки. Промінь також вважають проведеним у нескінченність в один бік.

Аналогічно попередньому, яким тонким не був би кінчик мого олівця, я не зможу накреслити математичну пряму, відрізок чи промінь - вони матимуть цілком певну ширину.


а


рис.1

А                                                              В

Рис. 2.


Рис.3

Кут

 

Кутом (рис.4) називається фігура, що складається з двох різних півпрямих із спільною початковою точкою, яка називається вершиною кута, а півпрямі - сторонами кута.


Рис.4


Очевидно, що до фігур, зазначених вище, поняття площі незастосовне.

Плоскі геометричні фігури

Чотирикутником взагалі є фігура, складена з чотирьох точок і чотирьох відрізків, які послідовно їх сполучають. Чотирикутник називають опуклим, якщо він розміщений в одній півплощині відносно прямої, яка містить будь-яку його сторону. На рисунках 5 і 6 показано опуклий та неопуклий чотирикутники.


Рис.5                                               Рис.6


Сторони чотирикутника, що виходять з однієї вершини, називають сусідніми сторонами, а сторони, які не мають спільного кінця - протилежними сторонами.

Прямокутник (рис.7) - це чотирикутник, у якого всі кути прямі.



b


а

Рис. 7.


Як бачимо з рис.7, геометри античності спочатку розбивали прямокутник на квадратики, які були одиницями площі (поняття метр і метр квадратний з’явилось пізніше) і підраховували їх кількість. Тепер використовується формула Sпрям. = аb.

Квадрат - це прямокутник, у якого всі сторони рівні (рис.8).


а

Рис.8


Можна також розбити квадрат на n одиниць площі і знайти їх суму, проте ми користуємося формулою Sквад. = а2.

Паралелограм - це чотирикутник, у якого протилежні сторони паралельні (рис.9).



h

а

Рис.9


Площа паралелограма визначається як добуток його сторони на висоту, проведену до цієї сторони: Sпарал. = аh.

Ромб - це паралелограм, у якого всі сторони рівні (рис.10).



    h

а

Рис.10

Площа ромба визначається так само як і площа паралелограма.

Трапецією називається чотирикутник, у якого тільки дві протилежні сторони паралельні (рис.11).


b

h

а

Рис.11


Площа трапеції дорівнює добутку півсуми її основ на висоту:


 

Кругом називається геометричне місце точок площини, що лежать від даної точки на відстані, не більшій за дане число R, яке називається радіусом круга (рис.12).



R



Рис.12


Площа круга визначається рівністю: , де π - число Архімеда, яке рівне відношенню довжини кола до його діаметра, причому вказане відношення є однаковим для будь-якого кола. Не буду зупинятися на виникненні числа π, оскільки багато чого, пов’язаного з його походженням не ясно і дотепер. Доведено ірраціональність числа π. За допомогою комп’ютерів отримані мільйони десяткових знаків цього числа. Перші знаки його такі: π = 3,14159265358…

Трикутником є фігура, що складається з трьох точок і трьох прямих, що їх з’єднують. Розрізняють прямокутні та косокутні трикутники (рис.13, 14)


с

b                с                                                      b

h

       γ

а                                   а

Рис.13                                             Рис.14


Оскільки прямокутний трикутник можна розглядати як половину прямокутника, то площа прямокутного трикутника рівна .

Взагалі, площа будь-якого трикутника може бути визначена як половина добутку його сторони на висоту, проведену до цієї сторони. За рис.14 запишемо: . Існують інші формули для визначення площі трикутника, наприклад  (див. рис.14). Можна також довести формулу Герона для площі трикутника:



де р - півпериметр трикутника, а саме .

Якщо плоска фігура зображена в системі координат (x, y), то площа будь-якої з них може бути представлена у вигляді визначеного інтеграла. Дана тема вивчається в 11-му класі середньої школи, тому поки що я не буду її торкатися. За допомогою визначеного інтеграла знаходять площі опуклих і не опуклих криволінійних плоских фігур.

Для площ n-кутників багатьма великими цього світу виведені спеціальні формули, запам’ятати які не завжди легко. Тому я зазвичай, застосовую інший метод обчислення площ багатокутників: всякий n-кутник може бути розбитий на певну кількість простіших фігур, формули площ яких я пам’ятаю.



© 2010.