рефераты бесплатно
Рефераты бесплатно, курсовые, дипломы, научные работы, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения,рефераты литература, рефераты биология, рефераты медицина, рефераты право, большая бибилиотека рефератов, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент и многое другое.
ENG
РУС
 
рефераты бесплатно
ВХОДрефераты бесплатно             Регистрация

Реферат: Волоконно-оптичні сенсори контролю шкідливих хімічних компонентів  

Реферат: Волоконно-оптичні сенсори контролю шкідливих хімічних компонентів

Реферат на тему:

ВОЛОКОННО-ОПТИЧНІ СЕНСОРИ КОНТРОЛЮ ШКІДЛИВИХ ХІМІЧНИХ КОМПОНЕНТІВ

УЖГОРОД -2007


ВСТУП

РОЗДІЛ 1. ОСОБЛИВОСТІ ВОЛОКОННО-ОПТИЧНИХ ДАТЧИКІВ

1.1. Історія розвитку волоконно-оптичних датчиків і актуальність їх  використання

1.2. Характеристики оптичного волокна як структурного елемента

 Датчика

1.3.Одно- і багатомодові оптичн волокна

1.4.Класифікація волоконно-оптичних датчиків і приклади їхнього застосування

1.5.Волоконні світловоди вимірювальні пристрої на їхній основі

1.6.Мікрорезонаторні волоконно-оптичні датчики

РОЗДІЛ 2.ІНТЕРФЕРЕНЦІЙНІ ВОЛОКОННО-ОПТИЧНІ ДАТЧИКИ

2.1.Торцевий волоконно-оптичний нтерферометр Фабрі-Перо

2.2. Інтерферометр Маха-Цендера багатомодовий інтеферометр

РОЗДІЛ 3. ХІМІЧНІ СЕНСОРИ

3.1. Загальні відомості про хімічн сенсори

3.2.Принципи роботи і пристрій хімічних сенсорів

3.3.Волоконно-оптичний сенсор для контролю аміаку в повітрі

3.4.Волоконно-оптичний датчик онізуючого випромінювання

3.5. Датчик концентрації газу

ВИСНОВКИ

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ


ВСТУП

Метою даної курсово роботи є огляд основної літератури на тему “Волоконно-оптичні сенсори контролю шкідливих хімічних компонентів”.

Сенсорізация виробничої діяльності, тобто заміна органів чуття людини на датчики, повинна розглядатися як третя промислова революція вслід за першими двома - машинно-енергетичної і інформаційно-комп'ютерної. Потреба в датчиках стрімко росте у зв'язку з швидким розвитком автоматизованих систем контролю і управління, упровадженням нових технологічних процесів, переходом до гнучких автоматизованих виробництв. Крім високих метрологічних характеристик датчики повинні володіти високою надійністю, довговічністю, стабільністю, малими габаритами, масою енергоспоживанням, сумісністю з мікроелектронними пристроями обробки інформац при низькій трудомісткості виготовлення і невеликій вартості. Цим вимогам в максимальному ступені задовольняють волоконно-оптичні датчики.


РОЗДІЛ 1. ОСОБЛИВОСТІ ВОЛОКОННО-ОПТИЧНИХ ДАТЧИКІВ

1.1. Історія розвитку волоконно-оптичних датчиків

і актуальність їх використання

Оптоелектроніка - це досить нова область науки і техніки, що з'явилася на стику оптики й електроніки. Варто помітити, що в розвитку радіотехніки із самого початку ХХ століття постійно простежувалася тенденція освоєння електромагнітних хвиль усе більш високої частоти. Важливим моментом у розвитку оптоелектроніки є створення оптичних волокон. Особливо інтенсивними дослідження стали наприкінці 1960-x років, а розробка в 1970 р. американською фірмою "Корнінг" кварцового волокна з малим загасанням (20 дБ/км) з'явилася епохальною подією і послужила стимулом для збільшення темпів досліджень і розробок на всі 1970-і роки.

Публікації про більш-менш прийнятні розробки й експериментальні зразки подібних датчиків з'явилися в другій половині 1970-х років. Однак вважається, що цей тип датчиків сформувався як один з напрямків техніки тільки на початку 1980-х років. Тоді ж з'явився термін "волоконно-оптичні датчики" (optіcal fіber sensors). Таким чином, волоконно-оптичні датчики - дуже молода область техніки.

Розробц волоконно-оптических датчиків сприяли і сприяють насамперед досягнення у виготовленні скляних волокон і їхніх системних компонентів (розвітвлень, джерел світла, детекторів і т.п. ). Світловий пучок, що попадає у волоконно-оптический детектор, від джерела світла під дією вимірюваного параметра (наприклад, тиску, температури, рівня, зміни концентрації речовини і т.п. ) терпить в детектор зміну по інтенсивності, поляризації, фазі або кольору і тим самим забезпечу одержання інформації. Поширення світлових хвиль всередині датчика здійснюється по скляних волокнах. Актуальність викристання волоконно-оптичних датчиків полягає в тому, що ці датчики нових типів знаходять застосування насамперед в умовах, характеризуємих наявністю агресивних випаровувань або вибухонебезпечних газових сумішей, у зонах підвищеної радіоактивності і сильних електромагнітних полів.

 1.2. Характеристики оптичного волокна як структурного елемента датчика      

Перш ніж оцінювати значимість цих характеристик в даній області застосування, відзначимо загальн переваги оптичних волокон [1]:

 - широкосмужність (передбачається до декількох десятків терагерц);

  - малі втрати (мінімальні 0,154 дБ/км);

  - малий (близько 125 мкм) діаметр;

  - мала (приблизно 30 г/км) маса;

  - еластичність (мінімальний радіус вигину 2 мм);

  - механічна міцність (витримує навантаження на розрив приблизно 7кг);

  - відсутність взаємно нтерференції;

  - безіндукційність (практично відсутній вплив електромагнітної індукції, а отже, і негативн явища, зв'язані з грозовими розрядами, близькістю             

  до лін електропередачі, імпульсами струму в силовій мережі);

  - взривобезопасність (гарантується абсолютною нездатністю волокна бути причиною іскри);

  - висока електроізоляційна міцність (наприклад, волокно довжиною 20 см   витримує напруга до 10000 B);

  - висока корозійна стійкість, особливо до хімічних розчинників, олії, води.

 У практиці використання волоконно-оптических датчиків мають найбільше значення останні чотири властивості. Досить корисні і такі властивості, як еластичність, малі діаметр маса. Широкосмужність же і малі втрати значно підвищують можливості оптичних волокон, але далеко не завжди ці переваги усвідомлюються розроблювачами датчиків. Однак, із сучасної точки зору, у міру розширення функціональних можливостей волоконно-оптичних датчиків у найближчому майбутньому ця ситуація потроху виправиться.

 Як буде показано нижче, у волоконно-оптичних датчиках оптичне волокно може бути застосоване просто як лінія передачі, а може відігравати роль самого чуттєвого елемента датчика. В останньому випадку використовуються чутливість волокна до електричного поля (ефект Керра), магнітного полю (ефект Фарадея), до вібрації, температури, тиску, деформаціям (наприклад, до вигину). Багато з цих ефектів в оптичних системах зв'язку оцінюються як недоліки, у датчиках же їхня поява вважається скоріше перевагою, яку варто розвивати.

1.3.Одно- багатомодові оптичні волокна

Оптичне волокно бува одного з двох типів [1]: одномодове, у якому поширюється тільки одна мода (тип розподілу переданого електромагнітного поля), і багатомодовое - з передачею безлічі (біля сотні) мод. Конструктивно ці типи волокон розрізняються тільки діаметром сердечника - світловодної частини, усередині якої коефіцієнт заломлення ледве вище, ніж у периферійній частині - оболонці.

  У техніц використовуються як багатомодові, так і одномодові оптичні волокна. Багатомодові волокна мають великий (приблизно 50 мкм) діаметр сердечника, що полегшує їхнє з'єднання один з одним. Але оскільки групова швидкість світла для кожної моди різна, то при передачі вузького світлового імпульсу відбувається його розширення (збільшення дисперсії). У порівнянні з багатомодовими в одномодових волокон переваги і недоліки міняються місцями: дисперсія зменшується, але малий (5...10 мкм) діаметр сердечника значно ускладню з'єднання волокон цього типу і введення в них світлового променя лазера.

Внаслідок цього одномодові оптичні волокна знайшли переважне застосування в лініях зв'язку, що вимагають високої швидкості передачі інформації (лінії верхнього рангу в рархічній структурі ліній зв'язку), а багатомодові найчастіше використовуються в лініях зв'язку з порівняно невисокою швидкістю передач нформації. Це так названі когерентні волоконно-оптичні лінії зв'язку, де придатні тільки одномодові волокна.

У многомодовому оптичному волокні когерентність прийнятих світлових хвиль падає, тому його використання в когерентних лініях зв'язку непрактично, що і визначило застосування в подібних лініях тільки одномодових оптичних волокон.

Навпроти, хоча при використанні оптичних волокон для датчиків вищевказані фактори теж мають місце, але в багатьох випадках їхня роль вже інша. Зокрема , при використанні оптичних волокон для когерентних вимірів, коли з цих волокон формується інтерферометр, важливою перевагою одномодових волокон є можливість передачі інформації про фазу оптичної хвилі, що нездійсненно за допомогою багатомодових волокон.

Отже, у даному випадку необхідно тільки одномодовое оптичне волокно, як і в когерентних лініях зв'язку. Проте, на практиці застосування одномодового оптичного волокна при вимірюванні нетипово через невелику його дисперсію. Тобто у сенсорній оптоелектроніці, за винятком датчиків-інтерферометрів, використовуються багатомодов оптичні волокна. Ця обставина характеризується ще і тим, що в датчиках довжина використовуваних оптичних волокон значно менше, ніж у системах оптичного зв'язку.

 1.4.Класифікація волоконно-оптичних датчиків і приклади їхнього застосування

Сучасні волоконно-оптичн датчики дозволяють вимірювати майже усе. Наприклад, тиск, температуру, відстань, положення в просторі, швидкість обертання, швидкість лінійного переміщення, прискорення, коливання, масу, звукові хвилі, рівень рідини, деформацію, коефіцієнт заломлення, електричне поле, електричний струм, магнітне поле, концентрацію газу, дозу радіаційного випромінювання і т.д.

Якщо класифікувати волоконно-оптичні датчики з точки зору застосування в них оптичного волокна, то, як уже було відзначено вище, їх

можна грубо розділити на датчики, у яких оптичне волокно використовується як лінія передачі, і датчики, у яких воно використовується як чуттєвий елемент. У датчиках типу "лін передачі" використовуються в основному багатомодові оптичні волокна, а в датчиках сенсорного типу найчастіше - одномодові.

  За допомогою волоконно-оптических датчиків з оптоволокном як лінією передачі можна вимірювати наступні фізичні величини:

 1) датчиком прохідного типу: температуру (на основі вимірювання зміни постійної люмінесценції в багатомодових волокнах, у діапазоні 0...70 0С с точністю 0,04 0С;

 2) датчиком відбивного типу: концентрацію кисню в крові (відбувається зміна спектрально характеристики, детектується інтенсивність відбитого світла, оптоволокно - пучкове, з доступом через катетер).

Якщо ж оптичне волокно в датчику використовувати як чуттєвий елемент, то можливі наступні застосування:

  1) інтерферометр Майкельсона дозволяє вимірювати пульс, швидкість кровотока: використовуючи ефект Доплера можемо детектувати частоту пульсації - використовуються як одномодові, так і багатомодові волокна; діапазон вимірів: 10-4...108 м/с.

 2) на основ неінтерферометричної структури можливо побудувати датчик, що дозволяє визначати дозу іонізуючого випромінювання, використовуване фізичне явища - формування центра фарбування, детектируемая величина - інтенсивність світла, що пропускається.

1.5.Волоконн світловоди і вимірювальні пристрої на їхній основі

 

Волоконний світловод (рис.1.1, а) складається із серцевини й оболонки, що виконуються з спеціального кварцового скла [2]. Показник заломлення оболонки вибирається трохи більш низьким, ніж у серцевини. Тому світлові промені, що падають під досить великими кутами із серцевини на границю з оболонкою, будуть зазнавати повного внутрішнього відбиванняння.

У результат ці промені,що називаються направляючими, будуть поширюватися по світловоду по зиґзаґоподібній траєкторії так, як це показано на рис.1.1, а. Сучасна технологія побудови оптичних волокон настільки досконала, що промені, що направляючі промені можуть поширюватися по світловодам на десятки кілометрів без істотних втрат енергії. В даний час волоконні світловоди широко застосовують для оптичного зв'язку (телеграф, телефон і т.п.). Іншим, більш важливим напрямком є використання оптичних волокон як чуттєві елементи приймачів фізичних величин. Розглянемо фізичні основи роботи таких приймачів.

Відомо, що звичайні фотоелектронні прилади реєструють електричний компонент світлово хвилі. Тому нас буде цікавити напруженість саме електричного поля. Для пройденого через світловод випромінювання вона може бути записана як [3]

де φ – фаза хвилі на виході із волокна рівна:

λ - довжина хвилі, nэф - ефективний показник заломлення для напрямляючого світла, L - довжина світловода, Е0 - амплітуда вектора напруженості, ω - частота електромагнітних коливань, t - час. Кожний зі згаданих параметрів хвилі може змінюватися при зовнішніх впливах на світловод, що можна використовувати для цілей реєстрації. У залежності від того, який параметр перетвориться, волоконн приймачі поділяють на амплітудні (зі зміною абсолютної величини вектора Е0 або, що еквівалентно інтенсивності хвилі, пропорційної \Ео\2 ), поляризаційні (зі зміною напрямку коливань вектора Е0), спектральні (зі зміною частотного спектра) і фазові (зі зміною φ).

Найпростішим амплітудним датчиком є відрізок світловода, що згинається під дією тиску, зусилля, переміщення або інших деформаційних величин. Вигин волокна веде до зменшення кута падіння наравляючих променів, на границю розділу серцевина-оболонка (рис.1.1, б), що приводить до порушення умов повного внутрішнього відбивання. У результаті частина направлячого випромінювання потрапляє в оболонку, де гаситься. Тому інтенсивність світла на виході з світловода зменшується, що можна зарегіструвати звичайним фотодіодом.

Страницы: 1, 2, 3


© 2010.