рефераты бесплатно
Рефераты бесплатно, курсовые, дипломы, научные работы, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения,рефераты литература, рефераты биология, рефераты медицина, рефераты право, большая бибилиотека рефератов, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент и многое другое.
ENG
РУС
 
рефераты бесплатно
ВХОДрефераты бесплатно             Регистрация

Реферат: Математична статистика  

Реферат: Математична статистика

Математична статистика

(реферат)


1. Задачі математичної статистики

Математична статистика як наука вивчає статистичні закономірності методами теорії ймовірностей за статистичними даними - результатами спостережень, опитувань або наукових експериментів.

Математична статистика розв’язує дві основні задачі.

Перша задача математичної статистики вказати способи збирання та групування статистичних даних.

Друга задача математичної статистики розробити методи аналізу статистичних даних у залежності від мети дослідження. Сюди відносяться:

а) оцінка невідомої ймовірності; оцінка невідомої функції розподілу; оцінка параметрів розподілу, вигляд якого відомий; оцінка залежності випадкової величини від однієї або декількох випадкових величин та інші;

б) перевірка статистичних гіпотез про вигляд невідомого розподілу або про величину параметрів розподілу, якщо він відомий.

Сучасна математична статистика розробляє способи визначення кількості експериментів до початку дослідження (планування експерименту), під час експерименту (послідовний аналіз) і розв’язує багато інших задач.

Отже, математична статистика вивчає методи збирання та обробки статистичних даних для одержання наукових та практичних висновків.


2. Генеральна та вибіркові сукупності

Нехай необхідно вивчити сукупність однорідних об’єктів відносно деякої ознаки (кількісної або якісної). Іноді для цього проводять суцільне обстеження, при якому досліджується кожний об’єкт сукупності. На практиці суцільне обстеження використовується порівняно рідко. Є декілька причин для цього:

·          сукупність має велику кількість об’єктів, яку обстежити фізично неможливо;

·          обстеження об’єкта вимагає його фізичного знищення;

·          для обстеження одного об’єкту необхідні значні матеріальні витрати.

В таких випадках вибирають із всієї сукупності об’єктів порівняно невелику кількість об’єктів, яку називають вибіркою , і обстежують їх. Множина об’єктів, з якої здійснюється вибірка називається генеральною сукупністю. Число елементів вибірки називають об’ємом вибірки, а число елементів генерально сукупності – об’ємом генеральної сукупності. Генеральна сукупність може мати скінченну або нескінченну кількість елементів.

Приклад 2.1. Множина деталей виготовлена у цеху є скінченною генеральною сукупністю.

Приклад 2.2. Множина можливих значень, які можна отримати у результаті вимірювання фізичної величини нескінченною генеральною сукупністю.

Часто генеральна сукупність має скінченну кількість об’єктів. Але якщо це число достатньо велике, то можна вважати, що генеральна сукупність має нескінченну кількість об’єктів. Це значно спрощує розрахунки без суттєвої втрати точност результатів. Таке спрощення виправдовується тим, що збільшення об’єму генеральної сукупності практично не впливає на результати обробки статистичних даних.

При здійсненн вибірки можна поступати способами: після того, як об’єкт вибраний і над ним виконано спостереження, його або повертають або не повертають у генеральну сукупність. У відповідності до цього розрізняють повторні вибірки, коли вибрані об’єкти повертаються в генеральну сукупність, і безповторні коли не повертаються.

Для того, щоб за даними вибірки можна було б зробити вірні висновки про генеральну сукупність, необхідно щоб вибірка правильно представляла пропорції генеральної сукупності. Цю умову коротко формулюють так: вибірка повинна бути репрезентативною.

На підстав закону великих чисел можна стверджувати, що вибірка буде репрезентативною, якщо здійснити випадково. Кожний об’єкт вибірки вибраний випадково із генерально сукупності, якщо всі об’єкти мають однакову ймовірність попасти у вибірку.

Якщо об’єм генеральної сукупності достатньо великий, а вибірка складає незначну частину, то різниця між повторною і безповторною вибірками незначна; у граничному випадку, коли генеральна сукупність нескінченна, а вибірка скінченна, різниця між вибірками зникає зовсім.

На практиц використовуються різні способи відбору об’єктів у вибірку. Принципово ц способи можна розділити на два види:

1) відбір, що не вимагає розбиття генеральної сукупності на частини. Сюди належать: а) простий випадковий безповторний відбір; б) простий випадковий повторний відбір.

2) відбір, при якому генеральна сукупність розбивається на частини. Сюди належать: а) типовий відбір; б) механічний відбір; в) серійний відбір.

Простим випадковим називають відбір, при якому об’єкти вибираються по одному із всієї генерально сукупності. Якщо при цьому об’єкти повертаються у генеральну сукупність, то відбір є простим випадковим повторним, якщо ні – простим випадковим безповторним.

Типовим називають відбір, при якому об’єкти вибираються не з усієї генеральної сукупності, а з кожної її “типово частини.

Приклад 2.3. Якщо деталі виготовляються на декількох станках, то деталі випадковим чином вибирають із деталей виготовленних на кожному окремому станку.

Механічним називають відбір, при якому генеральна сукупність випадковим чином розбивається на частини і з кожно частини випадково вибирають один об’єкт. Кількість таких частин має дорівнювати необхідному об’єму вибірки.

Приклад 2.4. Якщо необхідно вибрати 20% деталей, то вибирають кожну п’яту; якщо необхідно вибрати 5% деталей, то відбирають кожну двадцяту.

Суттєвим недоліком механічного відбору є те, що він не завжди забезпечу репрезентативність вибірки.

Приклад 2. Якщо відбирають кожний двадцятий валик, причому одразу після цього міняють різак, то відібраними виявляться валики, обточені затупленним різаком.

Серійним називають відбір, при якому об’єкти вибираються з генеральної сукупності не по одному, а серіями, як піддаються суцільному обстеженню.

Приклад 2.6. Якщо вироби виготовляються великою кількістю станків, то здійснюють суцільне обстеження продукцію лише декількох випадково вибраних станків.

Серійним відбором користуються коли ознака, відносно якої обстежується генеральна сукупність мало коливається в різних серіях об’єктів.

На практиці часто використовуються комбінований відбір, при якому сполучають вказані вище способи.


3. Статистичні розподіли та чисельні характеристики вибірки

Значення чисельної ознаки, які спостерігаються в деякій конкретній вибірці, називають варіантами. Послідовність таких варіант у зростаючому порядку – варіаційним рядом. Якщо у вибірці об’єму n варіанта  зустрічається  разів, то число

(3.1)

називають відносною частотою варіанти, а   частотою варіанти.

Від вибірки до вибірки об’єму n частоти  та відносні частоти  змінюються. Це означає, вони є значеннями випадкових величин  та , відповідно. В подальшому все що стосується конкретної вибірки буде позначатися малими буквами латинського та грецького алфавітів, а все що стосується вибірки взагал відповідними великими буквами.

Перелік варіант та відповідних до них частот (або відносних частот) називають статистичним розподілом вибірки. Статистичний розподіл, як правило, задається у вигляд таблиці. Ломана крива, яка з’єднує точки з координатами (xi, ni), або (xi, wi) у прямокутній систем координат називається полігоном частот.

Приклад 3.1. Для конкретної вибірки одержали статистичний розподіл відносних частот

.

Його гістограма має вигляд



Статистичний розподіл вибірки можна також представити у вигляді послідовності інтервалів та відповідних до них частот, що особливо зручно, коли ознакою є неперервна величина. Інтервал з варіантами розбивають на декілька часткових інтервалів довжиною  і знаходять для кожного з них суму частот варіант, які потрапили в інтервал. Якщо всі інтервали рівні (), то відповідні варіанти називають рівновіддаленими, а їх чисельні значення визначаються серединами відрізків. Якщо частота первинної варіанти знаходиться на границі двох нтервалів, то її частота рівномірно розподіляється між ними. Графічно статистичний розподіл з послідовністю інтервалів задається гістограмою частот (відноснихчастот). Для побудови гістограми частот (або відносних частот), необхідно на вісі абсцис відкласти частков нтервали і побудувати на них як основах прямокутники висотою  . Величини  називають густиною частоти, а величини - густиною відносної частоти. Загальна площа гістограми дорівнює сумі всіх частот, тобто об’єму вибірки n, а площа гістограми відносних частот дорівню одиниці.


Приклад 3.2. Для конкретної вибірки об'єму одержали розподіл частот по частковим інтервалам

Частковий інтервал довжиною

Сума частот варіант часткового нтервалу

Густина частоти

5-10

10-15

15-20

20-25

25-30

30-35

35-40

4

6

16

36

24

10

4

0.8

1.2

3.2

7.2

4.8

2.0

0.8

Полігон частот такого розподілу має такий вигляд


Емпіричною інтегральною функцією вибірки називають функцію

,(3.2)

 – кількість варіант менших ніж x (дискретна випадкова аеличина).

На відміну від емпіричної інтегральної функції розподілу вибірки, інтегральну функцію розподілу генеральної сукупності називають теоретичною інтегральною функцією розподілу. З теореми Бернуллі слідує, що відносна частота події  тобто  по ймовірності прямує до ймовірності  ц події. Це означає, що емпірична функція вибірки по ймовірності прямує до теоретичної функції розподілу генеральної сукупності. Тому емпірична функція розподілу вибірки є оцінкою теоретично функції генеральної сукупності.

Із означення емпіричної функції слідують такі її властивості:

1.         значення емпіричної функції належать відрізку [0; 1];

2.          – неспадна функція;

3.         якщо – найменша варіанта, то при ; якщо   найбільша варіанта, то

4.          при .

Статистичн розподіли конкретної вибірки характеризуються початковими

(3.3)

та центральними

(3.4)

емпіричними моментами степені k.

Від вибірки до вибірки емпіричні моменти змінюються і тому мають розглядатися як значення випадкових величин


 

,

Страницы: 1, 2, 3, 4


© 2010.