рефераты бесплатно
Рефераты бесплатно, курсовые, дипломы, научные работы, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения,рефераты литература, рефераты биология, рефераты медицина, рефераты право, большая бибилиотека рефератов, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент и многое другое.
ENG
РУС
 
рефераты бесплатно
ВХОДрефераты бесплатно             Регистрация

Реферат: Парадокс близнецов  

Реферат: Парадокс близнецов

Государственная академия сферы быта и услуг

Уфимский технологический институт сервиса

Кафедра физики

Контрольная работа по предмету:
«Концепция современного естествознания»
на тему: «Парадокс близнецов»

Содержание

                Введение.

1.   Постулаты специальной теории относительности Энштейна.

2.   Преобразования Лоренца в подвижной и неподвижных системах.

3.   Следствия из преобразований теории относительности: изменение длины и времени.

4.   Границы применимости законов классической механики.

5.   Список используемой литературы.

Заключение.

Введение

«Концепции современного естествознания» — новый предмет в сис­теме высшего образования. Насколько нужно знать современную на­уку человеку, который, скорее всего, никогда сам не будет работать в ней?» В наши дни ни один человек не может считаться образован­ным, если он не проявляет интереса к естественным наукам. Обыч­ное возражение, согласно которому интерес к изучению электриче­ства или стратиграфии мало что дает для познания человеческих дел, только выдает полное непонимание человеческих дел.

Наука — это не только совокупность знаний. «... Науке можно учить как увлекательнейшей части человеческой истории — как бы­стро развивающемуся росту смелых гипотез, контролируемых экс­периментом и критикой.

Итак, для чего же нужно изучать современное естествозна­ние?

Во-первых, для того, чтобы стать культурным человеком, надо знать, что такое теория относительности, генетика, синергетика, социобиология, экология, этология и другие науки.

Во-вторых, это важно и потому, что многое в нашей жизни строится в соответствии с научной методологией. Хотя человечеству далеко до научной орга­низации труда, тем не менее, научные принципы функционируют во многих видах деятельности, и, чтобы их успешно применять, надо их знать.

 В-третьих, потому, что знания, необходимые любому специа­листу, так или иначе связаны и в какой-то степени основаны на науч­ных данных. Этих причин достаточно для обоснования важности но­вого курса.

 

 

 

 

 

 

 

1.Специальная теория относительности Энштейна.

Название “теория относительности” возникло из наименования основного принципа (постулата), положенного Пуанкаре и Эйнштейном в основу из всех теоретических построений новой теории пространства и времени.

Специальная теория относительности, созданная в 1905 г. А. Эйнштейном, стала результатом обобщения и синте­за классической механики Галилея— Ньютона и электродина­мики Максвелла—Лоренца. "Она описывает законы всех физи­ческих процессов при скоростях движения, близких к скорости света, но без учета поля тяготения. При уменьшении скоростей движения она сводится к классической механике, которая, та­ким образом, оказывается ее частным случаем".[ГАсГ1]

            Специальная теория относительности называется иначе релятивистской теорией . В основу ее положены два принципа, которые являются постулатами. Эти постулаты надежно подтверждены экспериментально.

1.   Принцип относительности. Все инерциальные системы отсчета равноправны, во всех инерциальных системах не только механические, но и все другие явления природы протекают одинаково.

2.   Принцип постоянства скорости света. Во всех инерциальных системах скорость света в вакууме одинакова и равна с.

Из двух основных постулатов теории относительности вытекает, что два события, одновременные в одной системе отсчета, не одновременны в другой системе. Понятие одновременности имеет относительный смысл, и в разных инерциальных системах отсчета время протекает по-разному.

Содержанием теории относительности является физическая теория пространства и времени, учитывающая существующую между ними взаимосвязь геометрического характера.

          Название же “принцип относительности” или “постулат относительности”, возникло как отрицание представления об абсолютной неподвижной системе отсчета, связанной с неподвижным эфиром, вводившимся для объяснения оптических и электродинамических явлений.

Эйнштейн пишет: “.. неудавшиеся попытки обнаружить движение Земли относительно “светоносной среды”  ведут к предположению, что не только в механике, но и в электродинамике никакие свойства явлений не соответствуют понятию абсолютного покоя, и даже более того,- к предположению, что для всех координатных систем, для которых справедливы уравнения механики, имеют место те же самые электродинамические и оптические законы, как это уже доказано для величин первого порядка. Мы намерены это положение (содержание которого в дальнейшем будет называться “принципом относительности”) превратить в предпосылку... “[1] А вот что пишет Пуанкаре: “Эта невозможность показать опытным путем абсолютное движение Земли представляет закон природы; мы приходим к тому, чтобы принять этот закон, который мы назовем постулатом относительности, и примем его без оговорок.”

Преобразования Лоренца, отражающие свойства пространства-времени, были выведены Эйнштейном, исходя из 2 постулатов:  принципа относительности и принципа постоянства скорости света.

          1. Законы, по которым изменяются состояния физических систем, не зависят от того, к которой из двух координатных систем, находящихся относительно друг друга в равномерном поступательном движении, эти изменения состояния относятся.

          2. Каждый луч света движется в “покоящейся” системе координат с определенной скоростью , независимо от того, испускается ли этот луч света покоящимся или движущимся телом.

          Значение этих постулатов для дальнейшего развития теории пространства-времени состояло в том, что их принятие прежде всего означало отказ от старых представлений о пространстве и времени, как о многообразиях, не связанных органически друг с другом.

          Принцип относительности сам по себе не представлял чего-либо абсолютно нового, т.к. он содержался и в Ньютоновской физике, построенной на базе классической механики. Принцип постоянства скорости света также не был чем-то абсолютно неприемлемым с точки зрения ньютоновских представлений о пространстве и времени.

          Однако эти два принципа, взятые вместе привели к противоречию с конкретными представлениями о пространстве и времени, связанные с механикой Ньютона. Это противоречие можно проиллюстрировать следующим парадоксом.

            Пусть в системе отсчета  в начальный момент  в точке, совпадающей с началом координат произошла вспышка света. В последующий момент времени  фронт световой волны, в силу закона постоянства скорости света, распространился до сферы радиуса  с центром в начале координат системы . Однако в соответствии с постулатами Эйнштейна, это же явление мы можем рассмотреть и точки зрения системы отсчета  , движущейся равномерно и прямолинейно вдоль оси , так, что ее начало координат и направления всех осей совпадали в момент времени  с началом координат и направлениями осей первоначальной системы . В этой движущейся системе, соответственно постулатам Эйнштейна, за время  свет также распространится до сферы радиуса

, однако, в отличие о предыдущей сферы должен лежать в начале координат системы , а не . Несовпадение этих сфер, т.е. одного и того же физического явления, представляется чем-то совершенно парадоксальным и неприемлемым с точки зрения существующих представлений. Кажется, что для разрешения парадокса надо отказаться от принципа относительности, либо от принципа постоянства скорости света. Теория относительности предлагает, однако, совершенно иное разрешение парадокса, состоящее в том, что события, одновременные в одной системе отсчета , неодновременные в другой, движущейся системе , и наоборот. Тогда одновременные события, состоящие в достижении световым фронтом сферы, определяемой уравнением , не являются одновременными с точки зрения системы , где одновременны другие события, состоящие в достижении тем же световым фронтом точек сферы, определяемой уравнением

          Таким образом, одновременность пространственно разобщенных событий перестает быть чем-то абсолютным, как это принято считать в повседневном макроскопическом опыте, а становится зависящей от выбора системы отсчета и расстояния между точками, в которых происходит события. Эта относительность одновременности пространственно разобщенных событий свидетельствует о том, что пространство и время тесно связаны друг с другом, т.к. при переходе о одной системе отсчета к другой, физически эквивалентной, промежутки времени между событиями становятся зависящими от расстояний (нулевой промежуток становится конечным и наоборот).

          Итак, постулаты Эйнштейна помогли нам прийти к новому фундаментальному положению в физической теории пространства и времени, положению о тесной взаимосвязи пространства и времени и об их нераздельности, в этом и состоит главное значение постулатов Эйнштейна.

          Основное содержание теории относительности играет постулат о постоянстве скорости света. Основным аргументов в пользу этого является та роль, которую отводил Эйнштейн световым сигналам, с помощью которых устанавливается одновременность пространственно разобщенных событий. Световой сигнал, распространяющийся всегда только со скоростью света, приравнивается,  таким образом, к некоторому инструменту, устанавливающему связь между временными отношениями в различных системах отсчета, без которого якобы понятия одновременности разобщенных событий и времени теряют смысл.

Теория относительности, созданная Эйнштейном в 1905 г., стала закон­ченной теорией движения макроскопических тел. Её применение в теории эле­ментарных частиц наталкивается на ряд серьезных трудностей, которые, быть может, свидетельствуют о необходимости нового понимания принципа относи­тельности. Развитие атомной и особенно ядерной физики - блестящий триумф теории Эйнштейна - указывает вместе с тем на возможное дальнейшее развитие и обобщение этой теории.

Теория относительности ждет дальнейшего развития и обобщения и в другом направлении, помимо картины движений, взаимодействий и трансмута­ций элементарных частиц в областях порядка 10-13 см, Она все в большей сте­пени становится теорией, описывающей строение космических областей, по сравнению с которыми исчезающи малы расстояния между звездами и даже расстояния между галактиками.

2. Преобразования Лоренца в подвижной и неподвижных системах.

В соответствии с двумя постулатами специальной теории относительности между координатами и временем в двух инерциальных системах К и К' существуют отношения, которые называются преобразованиями Лоренца.

Для вывода преобразований Лоренца будем опираться лишь на “естественные” допущения о свойствах пространства и времени, содержавшиеся еще в классической физике, опиравшейся на общие представления, связанные с классической механикой:

          1. Изотропность пространства, т.е. все пространственные направления равноправны.

          2. Однородность пространства и времени, т.е. независимость свойств пространства и времени от выбора начальных точек отсчета (начала координат и начала отсчета времени).

          3. Принцип относительности, т.е. полная равноправность всех инерциальных систем отсчета.

            Различные системы отсчета по-разному изображают одно и то же пространство и время как всеобщие формы существования материи. Каждое из этих изображений обладает одинаковыми свойствами. Следовательно, формулы преобразования, выражающие связь между координатами и временем в одной - “неподвижной” системе  с координатами и временем в другой - “движущейся” системе , не могут быть произвольными.

Наша задача в точной формулировке сводится к следующему. Каковы значения х', у', z',t' некоторого события относительно системы К', если заданы значения х, у, z, t того же события относительно системы К? Со­отношения должны быть выбраны так, чтобы для одного и того же све­тового луча (причем для любого) относительно К и К' выполнялся закон распространения света в пустоте. Эта задача пространственного расположения систем координат решается следующи­ми уравнениями:

Страницы: 1, 2


© 2010.