рефераты бесплатно
Рефераты бесплатно, курсовые, дипломы, научные работы, курсовые работы, реферат, доклады, рефераты, рефераты скачать, рефераты на тему, сочинения,рефераты литература, рефераты биология, рефераты медицина, рефераты право, большая бибилиотека рефератов, реферат бесплатно, рефераты авиация, рефераты психология, рефераты математика, рефераты кулинария, рефераты логистика, рефераты анатомия, рефераты маркетинг, рефераты релиния, рефераты социология, рефераты менеджемент и многое другое.
ENG
РУС
 
рефераты бесплатно
ВХОДрефераты бесплатно             Регистрация

Курсовая работа: Кондуктометрический метод анализа и его использование в анализе объектов окружающей природной среды  

Курсовая работа: Кондуктометрический метод анализа и его использование в анализе объектов окружающей природной среды


Кондуктометрический метод анализа и его использование в анализе объектов окружающей природной среды



Введение

К началу XXI века стало ясно, что электрохимический анализ, как и сама аналитическая химия, вышел за пределы своего классического содержания. Если раньше методология электрохимического анализа по большей части развивалась на основе изучения объектов неорганической природы, то сейчас электрохимический анализ устойчиво «дрейфует» в сторону решения проблем экологии, анализа биологических и медицинских объектов, в которых органическое вещество встречается все чаще и чаще. В решении задач собственно электрохимического анализа актуальным становится конструирование модифицированных электродов, которые дают специфический отклик благодаря иммобилизации на электроде органических молекул или их фрагментов, например ДНК или ее олигомеров. Повышение интереса к анализу объектов органической природы предопределено тем, что число последних на несколько порядков превышает число ионов металлов и их соединений. При этом все шире используется разнообразие электродных процессов, более сложных форм электрического воздействия на изучаемый объект и преобразования аналитического сигнала, в том числе на основе достижений математики, информатики и электронной техники. Очевидно, что необходимый уровень знаний в этой сфере является непременным условием успешной деятельности специалистов в области электрохимического анализа, способных творчески применять и развивать указанные методы. Одним из распространенных методов является кондуктометрия. Кондуктометрия используется в работе анализаторов детергентов в сточных водах, при определении концентраций синтетических удобрений в оросительных системах, при оценке качества питьевой воды. В дополнение к прямой кондуктометрии для определения некоторых видов загрязнителей могут быть использованы косвенные методы, в которых определяемые вещества взаимодействуют перед измерением со специально подобранными реагентами и регистрируемое изменение электропроводности вызывается только присутствием соответствующих продуктов реакции. Кроме классических вариантов кондуктометрии применяют и ее высокочастотный вариант (осциллометрию), в котором индикаторная электродная система реализуется в кондуктометрических анализаторах непрерывного действия.


1. Теоретические основы кондуктометрического метода анализа

Кондуктометрические методы анализа основаны на измерении электропроводности исследуемых растворов. Существует несколько методов кондуктометрического анализа:

·           прямая кондуктометрия – метод, позволяющий непосредственно определять концентрацию электролита путем измерения электропроводности раствора с известным качественным составом;

·           кондуктометрическое титрование метод анализа, основанный на определении содержания вещества по излому кривой титрования. Кривую строят по измерениям удельной электропроводности анализируемого раствора, меняющейся в результате химических реакций в процессе титрования;

·           хронокондуктометрическое титрование – основано на определении содержания вещества по затраченному на титрование времени, автоматически фиксируемого на диаграммной ленте регистратора кривой титрования.

Кондуктометрия

Кондуктометрия относится к наиболее распространенным методам исследования растворов и жидких систем вообще.

·           проводящими принято условно с χ ~10-7 Ом-1·см-1 и выше;

·           умеренно проводящими с χ: 10-7 – 10-11 Ом-1 ·м-1;

·           непроводящими – χ ниже 10-11 Ом-1 ·м-1.

Данная классификация условна.

В ФХА принято пользоваться диаграммами «удельная электропроводность χ – состав». Поскольку электропроводность относится к заведомо не аддитивным свойствам, способ выражения концентрации при этом может быть произвольным, однако для наглядности чаще всего выбирают мольные доли. Диаграммы «молекулярная электропроводность λ – состав» используется реже.

Электрическое сопротивление

Основной константой, характеризующей электрические свойства вещества, является удельное электрическое сопротивление, зависящее от природы вещества и от температуры.

Согласно закону Ома удельное электрическое сопротивление (ρ) [Ом·м]:

,

где R – электрическое сопротивление, ом; S – площадь поперечного сечения, м2; l – длина, м.

Температурная зависимость электрического сопротивления металлов подчиняется закону:

ρt = ρ0 (1+αt),

где α – температурный коэффициент.

Электрическая проводимость обусловлена движением заряженных частиц и зависит от количества носителей заряда и их подвижности.

Для разбавленных твердых растворов, их удельное электрическое сопротивление по правилу Маттиссена представлено из двух слагаемых:

ρ = ρ(t) + ρ(x),

где ρ(t) – электрическое сопротивление чистого металла, зависящее от температуры метала; ρ(x) остаточное электрическое сопротивление, не зависящее от температуры и определяется типом примеси и ее концентрацией.

Эта формула применима при содержании примеси до 1 ат.% Согласно правилу Линде, добавочное электрическое сопротивление, вызываемое содержанием примеси 1 ат.%, пропорционально квадрату разности валентностей чистого металла и примеси (∆z):

∆ρ(x) = a + b(∆z)2,

где a, b – величины, определяющие свойства металла – растворителя.

Правило Маттиссена достаточно хорошо выполняется для большинства разбавленных металлических расплавов, правилу Линде многие расплавы не подчиняются.

Механизм электрической проводимости в металлических расплавах и твердых металлах принципиально не различается.

Переход металла из твердого в жидкое состояние сопровождается некоторым изменением электрических свойств: при плавлении удельное электросопротивление большинства металлов увеличивается в 1,5÷2 раза. Для некоторых металлов (Bi, Sb, As) характерно аномальное поведение: при плавлении их удельное электросопротивление уменьшается.

Электрическая проводимость оксидных расплавов близка к электропроводимости типичных электролитов (галлогениды щелочных металлов) и зависит от состава шлака и температуры. Это является одним из доказательств ионной теории строения шлаковых расплавов.

Их ионная структура определяет преимущественно ионную проводимость в расплавленном состоянии. Электропроводимость определяется, в первую очередь, размерами катионов и анионов и силами взаимодействия между ними.

Повышение температуры увеличивает электропроводимость оксидных расплавов. При переходе из твердого состояния в жидкое электропроводимость резко возрастает.

Уравнение Я.И. Френкеля характеризует температурную зависимость электропроводимости ионных кристаллов:


Уравнение применимо и для оксидных расплавов, в которых перенос тока осуществляется только катионами (которые много меньше по размеру, чем анионы), т.е. если радиусы анионов велики по сравнению с катионами, и анионы остаются почти неподвижными в электрическом поле.

При соблюдении уравнения Я.И. Френкеля экспертные данные укладываются в прямолинейную зависимость . Отклонения свидетельствуют о структурных изменениях, которые могут быть связаны с разложением комплексных анионов на простые.

.

Контактные методы измерения электрической проводимости расплавов

В основе лежит закон Ома: на фиксированном участке проводника из жидкого металла, имеющего длину l и площадь поперечного сечения S, определяется электросопротивление Rχ.

Из соотношения устанавливают значения удельной электропроводимости металла.

Для определения электросопротивления проводника применяют следующие электрические измерительные схемы:

·           схема вольтметра-амперметра, в которой при помощи вольтметра измеряют падение напряжения на концах проводника Vx, а амперметром – силу тока I. В этом случае значение Rx определяют по закону Ома: . Точность метода невысока (≤ 1%) и определяется классом точности приборов.

·           Компенсационный метод: в цепь включают эталонное сопротивление Rэ и с помощью потенциометра измеряют падение напряжения на проводнике Vx и эталоне Vэ. Расчет по формуле: более точный метод.

·           С использованием моста Уитстона или двойного моста Томсона. Точность 0,2–0,3%, но необходимо учитывать контактные сопротивления и сопротивление проводов.

Определение электропроводимости расплавов связано с техническими трудностями: контакт расплава с электродами, подбор материалов.

Конструкции измерительных ячеек с различным расположением калиброванного канала, в котором проводник из жидкого металла, электроды токовые и потенциальные.

Для расчета удельного электрического сопротивления (или электрической проводимости) по измеренному (методом моста или методом вольтметра-амперметра) значению электрического сопротивления расплава необходимо знать константу ячейки. Градуировку ячейки обычно производят водным раствором (при комнатной температуре) или расплавом NaCl или KCl (при 700–900 °С).

Значение константы ячейки определяют по формуле:

,

где r – сопротивление проводящих проводов и электродов при соответствующих температурах опыта; Rx измеряемое сопротивление.

Одним из способов определения r является предварительное определение.

Чаще используют другой метод, заключающийся в измерении электросопротивления при двух последовательных погружениях электродов на различную глубину. Этот способ позволяет исключить поправку на сопротивление проводов (r), т. к. расчет удельного электрического сопротивления ведут по разности измеренных сопротивлений:

,

где К1 и К2 константы ячейки при двух последовательных погружениях электродов.

Конструкция установки разработанной Б.М. Лепинских и О.А. Есиным (УПИ) с мостовой схемой измерения и ячейкой типа электрод-электрод.

Регулирование глубины погружения электродов производится вращением стержня (#), при этом происходит подъем или опускание тигля при неподвижных электродах.

Среднее значение константы ячейки устанавливают градуированием по 0,1 н раствору KCl. Этот метод используется для определения электрической проводимости двойных шлаковых систем. Схема моста позволяет измерять сопротивление расплавов с точностью до 0,01 ом. Относительная ошибка определения удельной электрической проводимости двойных шлаковых систем. Схема моста позволяет измерять сопротивление расплавов с точностью до 0,01 ом. Относительная ошибка определения удельной электрической проводимости достигает 11,8%.

Кондуктометрия располагает несколькими законами:

1. В очень разбавленных растворах (предельно разбавленных) эквивалентная электропроводность (λ0) является постоянной характеристикой раствора, не зависящей от изменения концентрации электролита. Говоря простым языком, это означает, что в разбавленных растворах электропроводность прямопропорциональна количеству заряженных частиц – ионов.

Для растворов сильных электролитов область предельного разбавления простирается до концентрации 0,0001н, а с небольшой погрешностью можно считать границей предельного разбавления концентрацию 0,001н.

Для расчетов в области больших концентраций существует формула Кольрауша, но ее нельзя использовать для прогноза, поскольку она носит явно эмпирический характер:

λ = λ0 + K C 1/2,

2. Предельная эквивалентная электропроводность раствора электролита равна сумме эквивалентных электропроводностей катиона и аниона.

3. Эквивалентные электропроводности подавляющего числа ионов близки друг к другу по величине. Анализ экспериментальных данных показывает, что при 18 0С для катионов λ0=0,0053 ± 0,0019 Ом-1 м2 г-экв-1 и для анионов λ0=0,0055 ± 0,0027 Ом-1 м2 г-экв-1. При 25 0С λ 0=0,0062 ± 0,0023 Ом-1 м2 г-экв-1 для катионов и λ0=0,0064 ± 0,0031 для анионов. Исключение составляют ионы H+, OH-, Fe(CN)63-, Fe(CN)64-, электропроводности которых аномально высоки:

Ион

Эквивалентная электропроводность,
λ 0, Ом-1 м2 г-экв-1

18 0С

25 0С

H+

0,0315 0,03497

1/3 Fe(CN)63-

- 0,01009

1/4 Fe(CN)64-

- 0,01105

OH-

0,0174 0,01976

Страницы: 1, 2, 3


© 2010.